

Signs of quadratic

function

Part 2

In the previous video, we've learned how to study the signs of a quadratic function.

In this video we will solve some applications on the learned objectives.

Solve in IR.

$$f(x) = 2x^2 - x + 1 > 0$$

$$\Delta = b^2 - 4ac = (-1)^2 - 4(2)(1) = 1 - 8 = -7 < 0$$

So always same signs as α .

$$a = 2 > 0$$
 so, $f(x) > 0$ for all $x \in IR$

The solution is: S = IR

Solve in IR.

$$f(x) = -x^2 + \frac{1}{2}x - \frac{1}{16} < 0$$

$$\Delta = b^2 - 4ac = \left(\frac{1}{2}\right)^2 - 4(-1)\left(-\frac{1}{16}\right) = \frac{1}{4} - \frac{1}{4} = 0$$

So,
$$x_1 = x_2 = -\frac{b}{2a} = -\frac{\frac{1}{2}}{2(-1)} = \frac{1}{4}$$

The inequality has always same signs as a: a = -1 < 0

-∞				+∞
	-	0	-	

The solution is:

$$S =]-\infty; \frac{1}{4}[\cup] \frac{1}{4}; +\infty[$$

Solve in IR.

$$f(x) = x^2 - 4x + 3 \ge 0$$

 $a + b + c = 1 + (-4) + 3 = 0$
so the roots are $x_1 = 1$ and $x_2 = \frac{c}{a} = \frac{3}{1} = 3$
 $a = 1 > 0$

-∞			3	+∞
-	0	+	0	-

The solution is: S = [1; 3]

$$S = [1; 3]$$

Solve in IR.

$$f(x) = (x^2 - 5x + 6)(-x^2 + 5x + 6) > 0$$

Step 1: study the existence of the roots of each factor.

$$1 x^2 - 5x + 6 = 0$$

$$\Delta = b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1 > 0$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{5 - 1}{2} = 2$$
 and $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{5 + 1}{2} = 3$

$$2-x^2+5x+6=0$$

$$a - b + c = -1 - 5 + 6 = 0$$
 so the roots are 1 and $-\frac{c}{a} = 6$

Solve in IR.

$$f(x) = (x^2 - 5x + 6)(-x^2 + 5x + 6) > 0$$

Step 2: summarize the signs of the two factors in a table.

-∞	-1		2		3		6	+∞
+		+)	(0)		67	+		+
	0	+		+		+,	0	-
-	0	+	0	-	0	+	ф	-

Solve in IR.

$$f(x) = (x^2 - 5x + 6)(-x^2 + 5x + 6) > 0$$

Step 3: write the solution.

-∞	-1		2		3		6	+∞
+		+	ϕ	-	o	+		+
-	0	+		+		+	0	-
-	O	+	0	-	0	+	O	-

According to the table of signs: $S =]-1; 2[\cup]3; 6[$

Solve in IR.

$$f(x) = \frac{x^2 + 2x - 3}{-x^2 + x + 2} < 0$$

Follow the same steps as in application 4

$$1x^2 + 2x - 3 = 0$$

$$a + b + c = 1 + 2 + (-3) = 0$$

So the roots are 1 and
$$\frac{c}{a} = -\frac{3}{1} = -3$$

$$2-x^2+x+2=0$$

$$a-b+c=-1-(+1)+2=0$$

So the roots are -1 and
$$-\frac{c}{a} = 2$$

Solve in IR.

$$f(x) = \frac{x^2 + 2x - 3}{-x^2 + x + 2} < 0$$

Table of signs:

Solution:
$$S =] - \infty; -3[\cup] - 1; 1[\cup 2; +\infty[$$

Solve in IR.

$$\frac{x}{2}-1<-\frac{1}{x+1}$$

Change the form of the inequality to:

$$f(x) < 0 \text{ or } f(x) > 0$$

$$\frac{\frac{x}{2} - 1 < -\frac{1}{x+1}}{\frac{x}{2} - 1 + \frac{1}{x+1} < 0}; x \neq -1$$

$$\frac{\frac{x}{2} - 1 + \frac{1}{x+1} < 0}{\frac{x(x+1) - 2(x+1) + 2}{2(x+1)}} < 0$$

So the inequality becomes
$$\frac{x^2-x}{2(x+1)} < 0$$

Solve in IR.

$$\frac{x}{2}-1<-\frac{1}{x+1}$$

Follow the same steps as in application 5

$$f(x) = \frac{x^2 - x}{2(x+1)} < 0$$

x	-00	-1		0	1	+∞
x^2-x	+		+ (-	0	+
x + 1	-		+	+		+
f(x)	-		+ (-	0	+

The solution is:

$$S =]-\infty; -1[\cup]0; 1[$$

Solve in IR.

$$(x^2-3x+2)^2 \ge x^4-6x^2+9$$

Change the form of the inequality to f(x) < 0 or f(x) > 0

$$(x^{2} - 3x + 2)^{2} \ge (x^{2} - 3)^{2}$$

$$(x^{2} - 3x + 2)^{2} - (x^{2} - 3)^{2} \ge 0$$

$$(-3x + 5)(2x^{2} - 3x - 1) \ge 0$$

Solve in IR.

$$(x^2-3x+2)^2 \ge x^4-6x^2+9$$

Following same steps as in the previous applications, we get the following table of signs: $f(x) = (-3x + 5)(2x^2 - 3x - 1) \ge 0$

		$\frac{3-\sqrt{1}}{4}$	-	$\frac{5}{3}$		$\frac{3+\sqrt{17}}{4}$	+∞
-3x + 5	+		+	J 0	-		-
$2x^2-3x-1$	+	0	-		-	0	+
F(x)	+	0	-	0	+	0	-

The solution is:
$$S =]-\infty; \frac{3-\sqrt{17}}{4}] \cup [\frac{5}{3}; \frac{3+\sqrt{17}}{4}]$$

Solve in IR.

$$\begin{cases} -x^2 + 3x - 2 \le 0 \\ x^2 + 3x + 4 > 0 \end{cases}$$

Solve each inequality and the solution for each one.

$$1-x^2 + 3x - 2 \le 0$$

$$a+b+c=-1+3-2=0$$

so the roots are 1 and $\frac{c}{a} = \frac{-2}{-1} = 2$

	1		2	+∞
-	0	+	0	-

$$S_1 =]-\infty; 1] \cup [2; +\infty[$$

Solve in IR.

$$\begin{cases} -x^2 + 3x - 2 \le 0 \\ x^2 + 3x + 4 > 0 \end{cases}$$

$$2x^2 + 3x + 4 \le 0$$

$$\Delta = b^2 - 4ac = 3^2 - 4(1)(4) = 9 - 16 = -7 < 0$$

So always same sign as a: a = 1 > 0 so f(x) > 0 for all values of x.

$$S_2 = IR =]-\infty; +\infty[$$

The solution of the system is $S = S_1 \cap S_2$

$$S = S_1 \cap S_2 = (] - \infty; 1] \cup [2; +\infty[) \cap IR =] - \infty; 1] \cup [2; +\infty[$$

